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Abstract 

In the last years, global optimization has been more 
used in seismic data processing. These methods are 
not so sensitive to initial starting points as the local 
optimization methods, and usually provide accurate 
estimations. 

In this work, we analyze the convergence of a global 
optimization algorithm called differential evolution 
(DE) for estimating the parameters of the common 
reflection surface (CRS) method for a 2D real dataset 
from Brazil. 

We propose a new stopping criterion, based on an 
intrinsic DE characteristic, that is much more robust 
than the commonly used fixed number of iterations. 
Our results indicate that we can obtain good images 
without wasting computational resources with the 
usage of this new criterion.  

Introduction 

One of the major goals of geophysics is to find earth 
models that explain geophysical observations. Thus, a 
common task in geophysics is to infer model parameters, 
which is usually done iteratively by fitting geophysical 
observations with theoretical predictions. Both local and 
global optimization methods are used in the estimation of 
these model parameters. Therefore, the branch of 
mathematics known as optimization has great importance 
in many geophysical applications (Sen & Stoffa, 1995). 

For many geophysical applications, the function to be 
optimized is very complicated, presenting several local 
minima and maxima, also known as valleys and hills. The 
minimum (maximum) of all the local minima (maxima) is 
called the global minimum (maximum). Note that the 
optimal points are minima, if the goal is to minimize a 
function, otherwise if the goal is to maximize a function, the 
optima are the maxima. In many situations, there are very 
poor local optima, i.e., solutions that have much worse 
values than the value of a global optimum. 

Typically, local optimization algorithms attempt to find a 
local optimum in the close neighborhood of a starting point. 

So, these methods are quite sensitive to the starting point. 
It is usually difficult to provide a good starting point, leading 
the optimization to a poor local optima. This problem has 
troubled geophysicists for many years (Sen & Stoffa, 
1995). 

With the increasing computational capacity, global 
optimization methods have been applied to several 
geophysical problems (Sen & Stoffa, 1995).  These 
methods attempt to find the global optimum by updating 
their current position using more global information about 
the function. Their convergence to the global optimum is 
not guaranteed, however user experience indicates that it 
is possible to find good solutions even with only poor 
starting points (Sen & Stoffa, 1995). Moreover, these 
methods can also be used to obtain additional information 
about the nature of the solution (Sen & Stoffa, 1995). 

In this work, we analyze the convergence of a global 
optimization algorithm called differential evolution (DE) 
(Storn & Price, 1997) for estimating the parameters of the 
common reflection surface (CRS) (Mann at al., 1999) 
method. The DE algorithm is a metaheuristic that presents 
a good convergence rate, simple parametrization and fast 
convergence, when compared to other heuristics / 
metaheuristics (Barros et al., 2015).  

Seismic stacking methods aim to provide a simulated zero 
offset (ZO) image of the subsurface in time. The CRS 
method is a powerful alternative to the classical and well-
known common-midpoint (CMP) stack. CRS produces ZO 
sections with high signal-to-noise ratios, improved 
resolution, more continuous reflectors, and enhanced 
images of dipping reflectors (Garabito et al., 2012). This 
improvement is made possible by the fact that CRS uses 
more traces for stacking than CMP, due to the CRS 
traveltimes depend not only on the midpoints, but also on 
the offsets (Barros et al., 2013). Therefore, traces on 
neighboring CMP gathers are used for stacking. 

The CRS stacking operator is a second-order hyperbolic 
traveltime approximation. It depends on three parameters 
in 2D data, and eight parameters in 3D data. The 
simultaneous determination of the CRS parameters by 
global optimization can be computationally expensive 
(Garabito et al., 2012). Therefore, a traditional strategy is 
to estimate the CRS parameters in a sequence of single-
parameter searches. However, the CRS parameters that 
are determined simultaneously by global optimization are 
more accurate, and they can be confidently applied to other 
seismic processes (Garabito et al., 2012). 

Barros et al. (2013, 2014) show a comparison between the 
stacking result using the sequential and the global search 
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approach in both synthetic and real data. As expected, the 
sequential search provided poor images when compared 
to the global search of all parameters simultaneously. We 
can say that the main reason for that is that the sequential 
search does not find the optimal estimates of the 
parameters, in the sense of maximizing the coherence for 
the CRS traveltime. It has bad consequences not only in 
the values of the parameters themselves, but also in the 
image quality. 

Although global optimization metaheuristics have been 
used in recent years to estimate CRS parameters, as far 
as we know, most works in the literature use a very simple 
stopping criterion: a fixed number of iterations. This can be 
problematic because convergence may not be reached if 
an optimization run is terminated too early. To avoid a 
convergence problem, it is common to use a high number 
of iterations, thus, wasting computational resources. 

We analyze the convergence of the DE algorithm in 
estimating the CRS parameters for a 2D real dataset from 
Brazil, called Tacutu. As the CRS parameters are 
estimated for each point-in-time of a ZO trace, and each 
CMP of the pre-stack data corresponds to a ZO trace, we 
performed an analysis of convergence on both time sample 
and CMP. Our experimental results show that the 
convergence of the optimization for each pair (time sample, 
CMP) can be very different from each other. Thus, a fixed 
number of iterations is an inappropriate stopping criterion 
for this problem. 

Hence, we also explore a smarter stopping criterion based 
on an intrinsic DE characteristic: its selection scheme does 
not allow deterioration with regard to the objective function 
value, i.e., the DE selection scheme is greedy. In this way, 
the individuals of the population usually converge to one 
point in the search space. So, the distribution of individuals 
can be used to derive conclusions about the state of an 
optimization run (Zielinski & Laur, 2008). 

We also show that a stopping criterion based on the 
distribution of the population individuals is much more 
robust than using only a fixed number of iterations. 
Moreover, we show that this new stopping criterion enable 
us to choose the resolution of the stack image. 

Theory  

Zero Offset Common Reflection Surface 

The method zero offset common reflection surface (ZO-
CRS) (Mann et al., 1999) produces a simulated ZO section 
from multicoverage data. This method can be used for 2D 
and 3D data, having a specific traveltime formulation for 
each case.  Here, we will focus on the 2D case. 

Let 𝑚0 be the central point, i.e., the point where the ZO 
trace is being constructed. As usual, we associate each 

trace with a source-receiver pair with coordinates 𝑠 and 𝑟, 
respectively. Alternatively, a trace may be identified by the 
midpoint 𝑚 and the half-offset ℎ of the source-receiver pair. 
The CRS traveltime relates the traveltime of a reflection 

that originates at a source in 𝑠 and is received by a receiver 

in 𝑟 with the two-way ZO traveltime 𝑡0 of the same reflection 
event. It is written as 

𝑡𝐶𝑅𝑆(ℎ, 𝑚𝑑)2 = (𝑡0 + 𝑎𝑚𝑑)2 + 𝑏𝑚𝑑
2 + 𝑐ℎ2, (1) 

where 𝑚𝑑 = 𝑚 − 𝑚0 is the trace midpoint displacement, 

the parameters 𝑎 and 𝑏 are related, respectively, to the dip 
and the curvature of the reflector image in the stacked 
section, and the parameter 𝑐 is related to the normal 
moveout (NMO) velocity. As with traditional velocity 

analysis (Taner & Koehler, 1969), the CRS parameters 𝑎, 

𝑏 and 𝑐 are estimated from the data by coherence analysis. 
The idea is that, for the right parameters, all the traces at 

time  𝑡CRS(ℎ, 𝑚𝑑) refer to the same reflection event, so that 
these samples should be coherent, or aligned. 

Differential Evolution 

Differential Evolution (DE) (Storn & Price, 1997) is a 
parallel direct search method for continuous space 

variables which utilizes 𝑁𝑃 D-dimensional parameter 
vectors 𝐱𝑖,𝐺 , 𝑖 = 1, … , 𝑁𝑃 as population, on each 

generation 𝐺. Each parameter vector constitutes a 
candidate solution of the optimization problem. The DE 
algorithm is divided in three stages: mutation, crossover 
and selection (see Algorithm 1). 

The mutation operation generates a new vector for each 
individual by the following expression: 

𝐯𝑖,𝐺+1 = 𝐱𝑟1 ,𝐺 + 𝐹(𝐱𝑟2,𝐺 − 𝐱𝑟3,𝐺).  (2) 

The indexes 𝑟1, 𝑟2, 𝑟3 ∈ {1, … , 𝑁𝑃} are mutually distinct, 

chosen randomly and different from the index 𝑖. 𝐹 is a real 
and constant factor in the range of [0, 2], which controls the 
length of the step given in the direction defined by 𝐱𝑟2,𝐺 −

𝐱𝑟3,𝐺. 

The crossover operation is employed with the goal of 
enhancing the diversity of the mutated parameter vectors. 
Let 𝐱𝑖,𝐺 be the vector under analysis and 𝐯𝑖,𝐺+1 the mutated 

vector obtained by Eq. 2. The crossover resultant vector 
𝐮𝑖,𝐺+1 is obtained by 

𝐮𝑗𝑖,𝐺+1 {
𝐯𝑗𝑖,𝐺+1, if 𝑟𝑗 ≤ 𝐶𝑅 and 𝑗 ≠ 𝑙𝑖

𝐱𝑗𝑖,𝐺 , if 𝑟𝑗 > 𝐶𝑅 and 𝑗 ≠ 𝑙𝑖
,  (3) 

where 𝑗 = 1, … , 𝐷, 𝑟𝑗~U(0,1), 𝐶𝑅 ∈ [0,1]is the crossover 

constant factor defined by the user and 𝑙𝑖 ∈ 1, … , 𝐷 is a 
random index, which ensures that  𝐮𝑖,𝐺+1 receives at least 

one component from  𝐯𝑖,𝐺+1. 

After the stages of mutation and crossover, the selection of 
the vectors to be preserved in the next generation is made 
by the use of a greedy criterion. The vector  𝐮𝑖,𝐺+1 is 

compared to the vector  𝐱𝑖,𝐺. If vector 𝐮𝑖,𝐺+1 yields a bigger 

cost function value than  𝐱𝑖,𝐺, then  𝐱𝑖,𝐺+1 is set to 𝐮𝑖,𝐺+1; 

otherwise, the old value 𝐱𝑖,𝐺 is retained. 
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Algorithm 1: Differential Evolution 

 

Input: population size NP, scale factor of 

mutation F, crossover rate CR 
Output: final population PG 

G ← 0 

PG ← random population of NP individuals // PG = 
{x1,G, x2,G, ..., xNP,G}  

fx ← fitness of each individual xi,G // i = {1, 2, ..., 

NP}  
While stopping criteria are not satisfied 
  For i = 1 to NP 
    // Mutation 
         Calculate Eq (2)   
    // Crossover 
    Calculate Eq (3) 

  fu ← fitness of each individual ui,G // i = {1, 2, 

..., NP} 
  // Selection 
  For i = 1 to NP 
    If fui > fxi 

      xi,G+1 ← ui,G+1 
    Else 

      xi,G+1 ← xi,G 

  G ← G + 1 

 

Method 

One possibility to measure the distribution of individuals is 
the standard deviation of the fitness of all individuals. The 
optimization can be stopped when the standard deviation 
is less or equal a given threshold. As the standard 
deviation is a scalar relative to a mean, we chose to use 
the relation between the standard deviation and the mean 
of the population fitness to measure the distribution of the 
individuals. We refer to this stopping criterion as sc_sm in 
what follows. 

In this work, the semblance (Neidell & Taner, 1971) was 
used as the cost function to measure the fitness of the 
population individuals. This function returns a value close 
to 1 when the hyperboloid defined by the CRS traveltime 
equation (Eq. 1) has a good fit to the traces, and returns a 
value close to 0 otherwise. Each individual of the 

population is a vector in 𝑅3 that has estimations for the 
parameters a, b, c of Eq. 1. The user-defined parameters 

of the DE algorithm were set to 𝑁𝑃 = 20, 𝐹 = 0.5, and 

𝐶𝑅 = 0.3. 

We ran the CRS stack for the Tacutu data with and without 
the usage of a velocity guide, and analyze the convergence 
of the DE algorithm for both cases.  

In an experiment, we ran the CRS stack with a fixed 
number of iterations as the stopping criterion. We show the 
decay of the sc_sm over iterations, analyzing it by CMP 
and time sample. 

We also ran the CRS stack considering the proposed 

stopping criterion: sc_sm. In this case, we use the sc_sm 
together with a maximum number of iterations (sc_maxit). 
It was done because, as it can be seen in the results 
section, there are some points with a very complicated 
fitness surface. So, we use sc_maxit to limit the 
computational cost in terms of runtime. 

Results 

Figure 1 shows the sc_sm over iterations for the Tacutu 
data without using a velocity guide. As the optimization 
runs for each pair (time sample, CMP), we plotted the 
mean values (and the standard deviations in the case of 
Figure 1b and 1d) of the sc_sm over both CMPs and time 
samples. Analyzing the colormap of Figure 1a, we notice 
that the converge of the DE algorithm is similar inside two 
large subgroups of CMPs. However, the convergence is 
very distinct between these two subgroups. In the 
colormap by time samples (Figure 1c), we also notice that 
the converge is very different between them. It reinforces 
the idea that to use a fixed number of iterations as the 
stopping criterion of the optimization run is not a good 
option. We also observe in the colormaps that the DE 
algorithm did not converge for some points even after 500 
iterations. We also see in Figure 1, more specifically Figure 
1b and 1d, that the standard deviation of the sc_sm also 
decays over iterations for both CMPs and time samples. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1 - sc_sm over iterations for Tacutu data without using 

velocity guide. Plot of the colormap of the sc_sm over iterations 

(a) by CMP, and (c) by Time Sample. Plot of the mean (in blue) 
and standard deviation (in red) of the sc_sm over iterations (b) by 
CMP, and (d) by Time Sample. 

Figure 2 is similar to Figure 1, but now using a velocity 
guide. The usage of a velocity guide decreases the size of 
the search space, making the problem easier to solve. For 
this reason, we can observe that the DE algorithm 
converges using less iterations. Another interesting aspect 
to observe is that the most difficult regions, for both CMPs 
and time samples, is the same with or without using a 
velocity guide. Comparing Figure 1b and 1d with Figure 2b 
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and 2d, we also notice that the standard deviation of the 
sc_sm over the iterations is smaller with the usage of a 
velocity guide. 

 
(a) 

 
(b) 

 
(c)  

(d) 

Figure 2 - sc_sm over iterations for Tacutu data using velocity 
guide. Plot of the colormap of the sc_sm over iterations (a) by 
CMP, and (c) by Time Sample. Plot of the mean (in blue) and 
standard deviation (in red) of the sc_sm over iterations (b) by 
CMP, and (d) by Time Sample. 

Considering all the optimization runs necessary to stack 
the Tacutu data, we can observe in Figure 3 (without the 
usage of a velocity guide) and Figure 4 (with the usage of 
a velocity guide) in which iteration the optimization runs 
would stop for different thresholds for sc_sm. As expected, 
the higher the threshold value, the less iterations are 
required for convergence. 

An interesting fact is that the images produced for these 

different thresholds for sc_sm and for the fixed number of 
iterations (500 and 200 without and with the usage of a 
velocity guide, respectively) are very similar to each other 
(see Figure 5 and 6). An important information about the 
stack images of Figure 5 and 6 is that we use sc_sm 
together with sc_maxit to limit the runtime of the stacking 
process. We set sc_maxit to 500 and 200 in the case of not 
using and using a velocity guide, respectively. 

These stack images of Figures 5 and 6 show us that even 
using a rough threshold for sc_dm, we can obtain a stack 
image with good resolution and quality. So, we can save 
computational resources without giving up quality. The 
small differences among the images is only on the 
continuity of some stretches. 

Conclusions 

In this work, we analyze the convergence of a global 
optimization algorithm commonly used in the CRS stacking 
method, called differential evolution. As expected, the 
number of iterations necessary for each optimization run 
depends on the CMP and the time sample being 
processed. Thus, the choice of a fixed number of iterations 
as stopping criterion can compromise significantly the 
result. 

To overcome this problem, we explore another type of 
stopping criterion based on the distribution of the 
population individuals. This new criterion speeds up the 
algorithm significantly without practically change the 
quality of the final stack image. 

Since we can obtain good images with a rough threshold 
to this new stopping criterion, we can test user-defined 
CRS parameters quickly. Therefore, it helps the users in 
the data processing flow. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3 - Number of the iteration in which the user-defined threshold for sc_sm was reached (without using velocity guide) for threshold = 
(a) 0.15, (b)0.10, and (c) 0.05. 
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(a) 

 

(b) 

 

(c) 

Figure 4 -  Number of the iteration in which the user-defined threshold for sc_sm was reached (using velocity guide) for threshold = (a) 0.15, 
(b)0.10, and (c) 0.05. 

(a) 
 

(b) 
 

(c) 
 

(d) 

Figure 5 - Stack images of the Tacutu data using different thresholds for sc_sm and for a fixed number of iterations (without using velocity 
guide). For threshold = (a) 0.15, (b) = 0.10, (c) = 0.05, and for (d) 500 iterations. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6 - Stack images of the Tacutu data using different thresholds for sc_sm and for a fixed number of iterations (using velocity guide). 
For threshold = (a) 0.15, (b) = 0.10, (c) = 0.05, and for (d) 200 iterations. 
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